Source code for train_spacy_NER

from __future__ import unicode_literals, print_function
import os
import random
from pathlib import Path
import spacy


# training data
# Note: If you're using an existing model, make sure to mix in examples of
# other entity types that spaCy correctly recognized before. Otherwise, your
# model might learn the new type, but "forget" what it previously knew.
# https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting


[docs]def pseudo_rehersal(model): #TODO add the rehersal return 0
[docs]def train(dataset=[], model=None, new_model_name=None, output_dir=os.getcwd()+"/models", n_iter=10, Label="random_ent", verbose=False): """Set up the pipeline and entity recognizer, and train the new entity.""" if not dataset: return None if model is not None: nlp = spacy.load(model) # load existing spaCy model if verbose: print("Loaded model '%s'" % model) else: nlp = spacy.blank('en') # create blank Language class if verbose: print("Created blank 'en' model") # Add entity recognizer to model if it's not in the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy if 'ner' not in nlp.pipe_names: ner = nlp.create_pipe('ner') nlp.add_pipe(ner) # otherwise, get it, so we can add labels to it else: ner = nlp.get_pipe('ner') ner.add_label(Label) # add new entity label to entity recognizer # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner'] with nlp.disable_pipes(*other_pipes): # only train NER optimizer = nlp.begin_training() for itn in range(n_iter): random.shuffle(dataset) losses = {} for text, annotations in dataset: nlp.update([text], [annotations], sgd = optimizer, drop=0.35,losses=losses) print(losses) ''' # test the trained model test_text = 'Do you like MIT?' doc = nlp(test_text) print("Entities in '%s'" % test_text) for ent in doc.ents: print(ent.label_, ent.text) ''' # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.meta['name'] = new_model_name # rename model nlp.to_disk(output_dir) print("Saved model to", output_dir) ''' # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) doc2 = nlp2(test_text) for ent in doc2.ents: print(ent.label_, ent.text) ''' return nlp